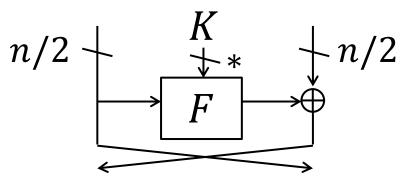


Meet-in-the-Middle Attacks on Generic Feistel Constructions

Jian Guo¹, Jérémy Jean,¹ Ivica Nikolić¹ and Yu Sasaki²

Nanyang Technological University Singapore
 NTT Secure Platform Laboratories, Japan
 9/December/2014 @ Asiacrypt 2014

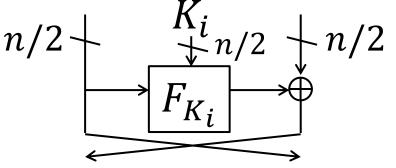
- Block-ciphers with Feistel
- Meet-in-the-Middle Attacks (Collision Attacks)
- Key Recovery Attacks against Feistel-2
- Key Recovery Attacks against Feistel-3
- Concluding Remarks

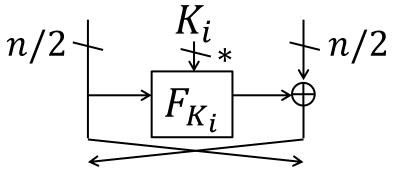


Research Background

Copyright©2014 NTT corp. All Rights Reserved.

• Build *n*-bit permutation from n/2-bit function




- Advantages
 - *Enc* and *Dec* can share the same network
 - function \rightarrow permutation
 - small component \rightarrow large permutation
- Useful design choice even now: Simon and LAC

Generic Constructions (1/2)

- Luby-Rackoff
 - regarded as $|K| = \frac{n}{2} \cdot 2^{\frac{n}{2}}$ bits
 - provable security
 - hard to implement
- Feistel-1, analyzed by Knudsen
 - regarded as $|K| = \frac{n}{2}$ bits
 - cryptanalysis makes sense
 - still hard to implement

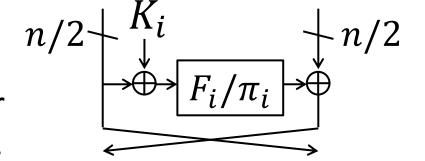
Copyright©2014 NTT corp. All Rights Reserved. 5

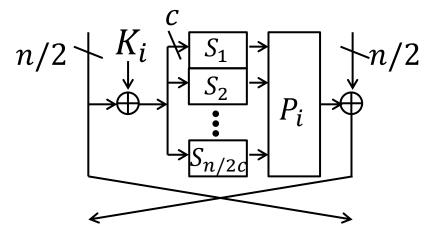
(Classification of Feistel-x is from Isobe-Shibutani Asiacrypt2013)

S-boxes and a linear map P_i .

• *F*-function consists of *c*-bit

• Feistel-3


• Feistel-2


F-function can be function or permutation. They may differ

in different rounds.

• still captures many designs

Generic Constructions (2/2)

F-function	#rou n	unds for . 3n/2	K = 2n	Method	Ref.
any	5	6	7	imp. diff.	[Knu02]
any	5	7	9	MitM(ASR)	[IS13]
bij. <i>,</i> ident.	6	—	—	Integlike	[Tod13]
any	6	8	10	MitM	Ours

- No assumption on *F*, e.g. *F* can be one-way func.
- For k = (s + 1)n/2, #rounds is 4s + 2.
- Complexity is higher than previous work.

<i>F</i> -function	#rou n	nds for $ $ $3n/2$	K = 2n	Method	Ref.
any	7	9	11	MitM(ASR)	[IS13]
any	9	11	13	MitM	Ours
identical	10	12	14	MitM	Ours

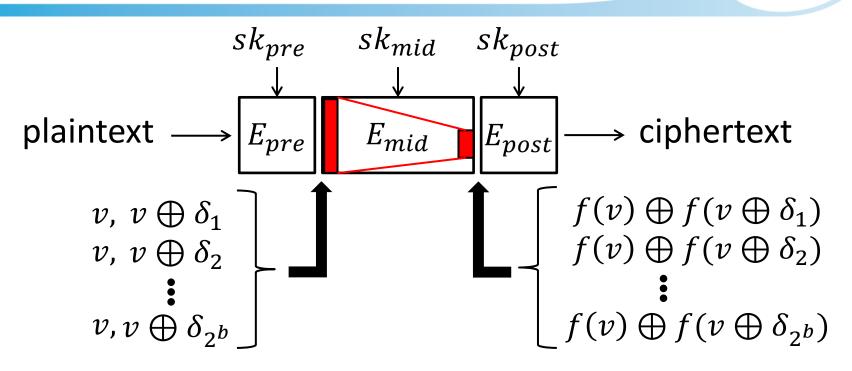
- Attack complexity depends on the S-box size, c.
- Our attacks work for practical choices of c
 e.g. n = 128, c = 8. (128-bit block, 8-bit S-boxes)

Framework of Meet-in-the-Middle Attacks

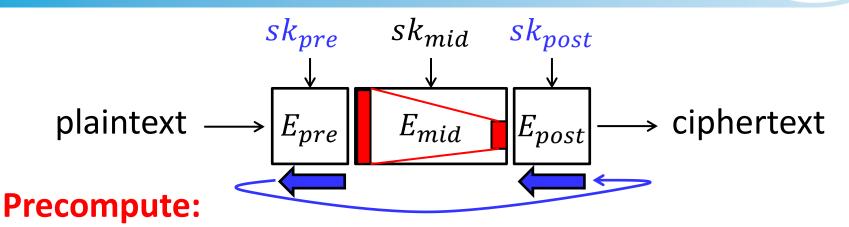
Copyright©2014 NTT corp. All Rights Reserved.

- Divide the cipher into three parts.
- [Offline] Construct a distinguisher in E_{mid} , which works for any choice of sk_{mid} .
- [Online] Guess sk_{pre} and sk_{post} . The correct subkey guess leads to an internal state value consistent with the distinguisher.

$$sk_{pre} \quad sk_{mid} \quad sk_{post}$$


$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$plaintext \longrightarrow E_{pre} \quad E_{mid} \quad E_{post} \longrightarrow ciphertext$$

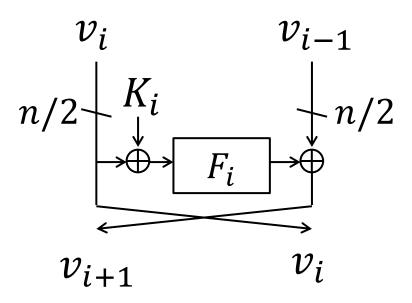

9

Distinguisher in MitM Attacks

- Determine a set of 2^b differences $\{\delta_1, \delta_2, \dots, \delta_{2^b}\}$.
- *b*-**\delta**-set: a set of 2^b paired values ($v, v \oplus \delta_i$).
- The num of (ordered) set of 2^b partial differences after E_{mid} can be smaller than all the possibilities.

Key Recovery Procedure

Compute possible sets of partial differences from $b - \delta$ -set. They are stored in a pre-computation table T_{δ} .


Online:

- Collect (P, P') and (C, C'). Guess sk_{pre} and sk_{post} .
- Build a b- δ -set at the beginning of E_{mid} and obtain P.
- Obtain C and compute the diff at the end of E_{mid} .
- Check if the result matches one of T_{δ} .

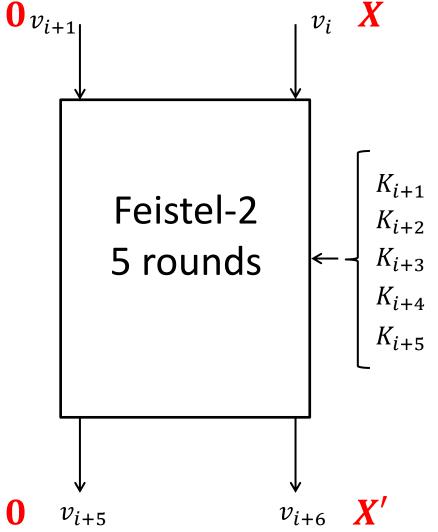
Key Recovery Attacks against Feistel-2

Copyright©2014 NTT corp. All Rights Reserved.

- 1. Find a truncated differential characteristic satisfying the following condition:
 - Given a pair of input and output differences, the number of possible internal state values is small.

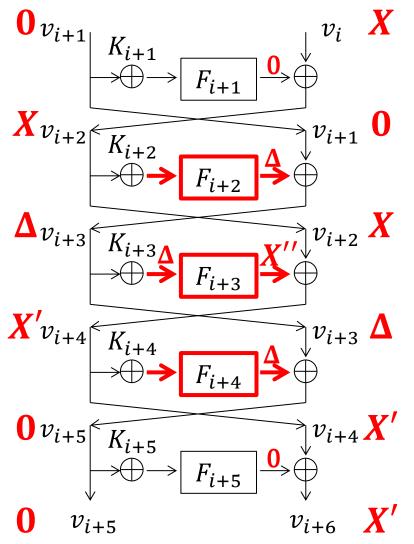
Lemma 1

2. For each internal state value, differential propagation from the beginning to the end of E_{mid} is uniquely computed.


Proposition 1

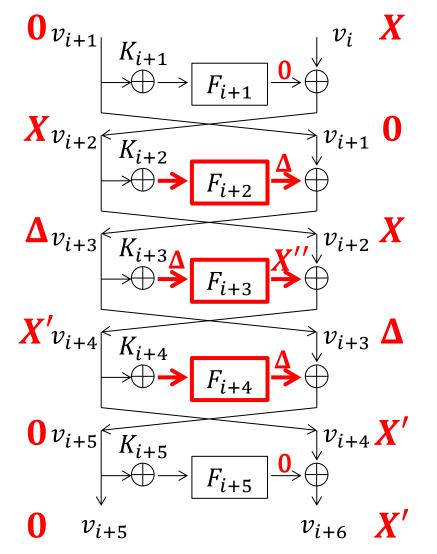
5-Round Distinguisher (Lemma 1)

Let X, X' be two non-zero differences s.t. $X \neq X'$.


The number of internal state values for the middle 3-rounds satisfying the differential propagation $(\mathbf{0}, X) \rightarrow (\mathbf{0}, X')$ in 5 rounds is only $2^{n/2}$.

Input difference (0, X)and output difference (0, X') are propagated.

The num of differential characteristics is $2^{n/2}$. X, X', X'' are fixed, and if Δ is fixed, all the differences are fixed.

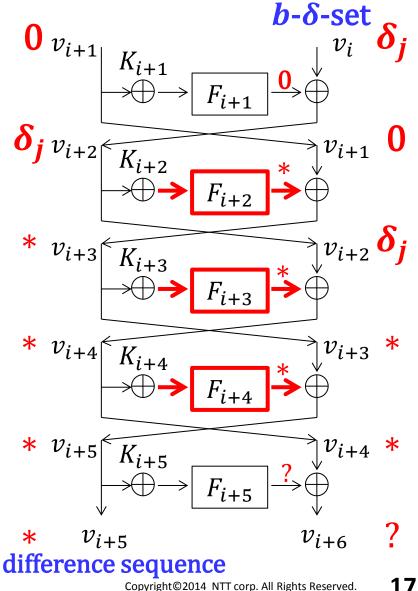


Proof of Lemma 1 (2/2)

For each Δ , input and output differences are fixed for F functions in the 3 middle rounds.

If both of input and output differences are fixed, only 1 state value is obtained on average.

The num of internal state values satisfying the diff propagation is $2^{n/2}$.

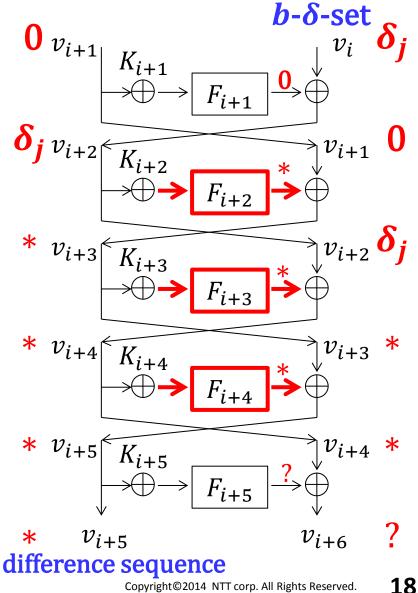

F_{i+3}

Make b- δ -set $(m, m \oplus \delta_i)$, and construct a set of Δv_{i+5} for each δ_i . The num of such sets is limited to $2^{n/2}$.

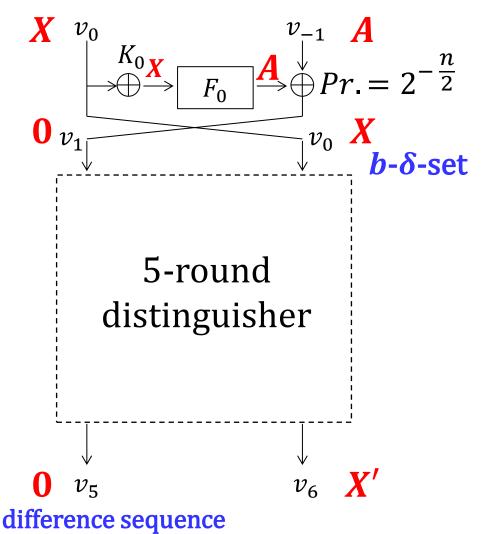
5-Round Distinguisher (Proposition 1)

Set $\mathfrak{D} = (\delta_1, \delta_2, \cdots, \delta_{2^b})$ to ones produced by *b* LSBs of v_i .

Let $(m, m \oplus \delta), \delta \in \mathfrak{D}$ be a pair of state values satisfying the 5-round diff. propagation.


Intuition for Proof of Proposition 1

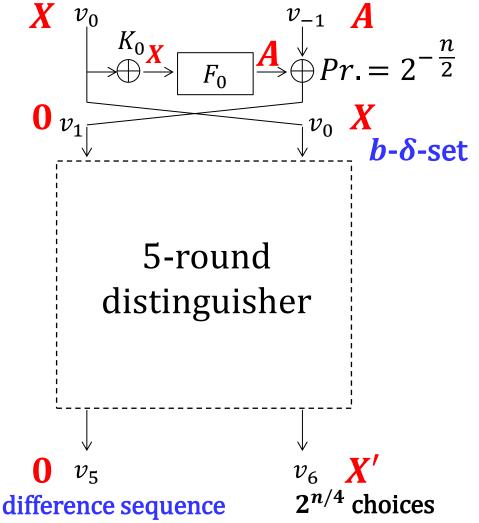
Approach: For each of $2^{n/2}$ internal state values, any $\boldsymbol{\delta_i}$ at Δv_i can be mapped to Δv_{i+5} without the value of v_i, v_{i+1} , and subkeys.


Intuition:

For each round, the state value and new input diff can yield new output diff. Then, Δv_{i+5} is computed.

• 1 round is added before the 5R distinguisher.

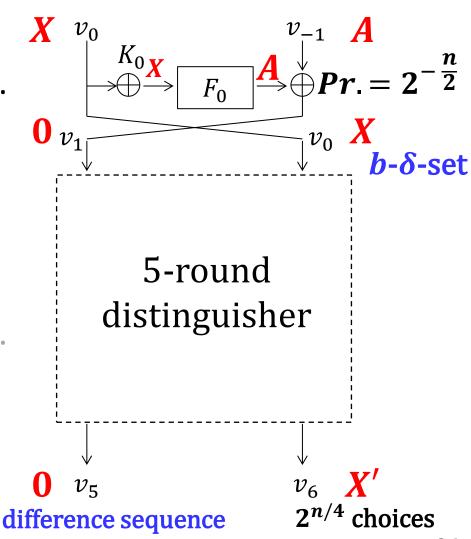
• The attacker's first goal is recovering *K*₀.



Innovative R&D by N

Fix (X, X') and compute $2^{n/2}$ possible difference sequences of Δv_{i+5} . Store the result in T_{δ} . Complexity: $2^{n/2}$

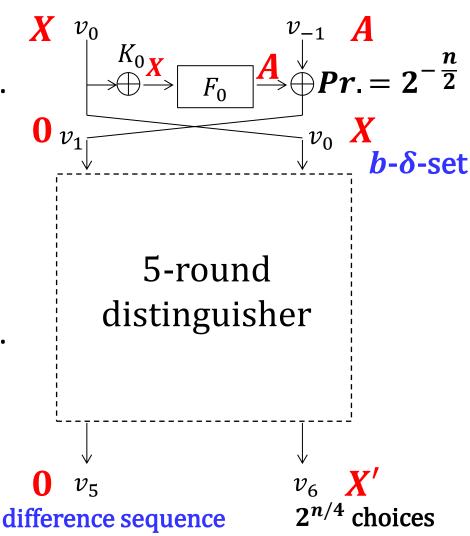
Repeat the above by changing X' $2^{n/4}$ times. (change n/4 LSBs of X') Complexity: $2^{3n/4}$



Online Phase (Collecting Pairs) 1/2

- Fix v_0 .
- For all $2^{n/2}$ choices of v^{-1} , query $(v_0,*)$ and $(v_0 \bigoplus X,*)$. 2^n pairs are generated.
- Pick up pairs satisfying $2^{n/4}$ choices of (0, X'). $2^{n/4}$ pairs will be obtained.
- Iterate the above $2^{n/4}$ times by changing the value of v_0 . $2^{n/2}$ pairs are expected.

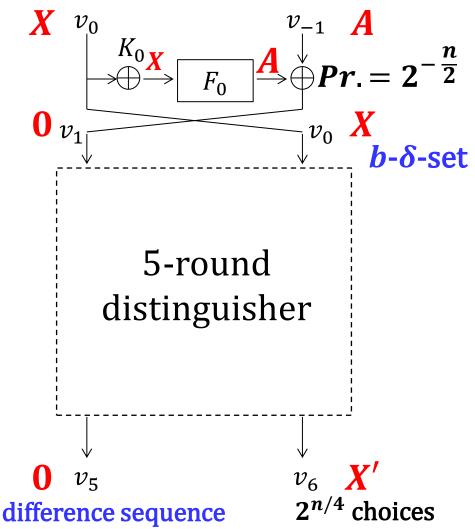
Data Complexity: $2^{3n/4}$



Online Phase (Collecting Pairs) 2/2

- Fix v_0 .
- For all $2^{n/2}$ choices of v^{-1} , query $(v_0,*)$ and $(v_0 \bigoplus X,*)$. 2^n pairs are generated.
- Pick up pairs satisfying $2^{n/4}$ choices of (0, X'). $2^{n/4}$ pairs will be obtained.
- Iterate the above $2^{n/4}$ times by changing the value of v_0 . $2^{n/2}$ pairs are expected.

Data Complexity: $2^{3n/4}$



Copyright©2014 NTT corp. All Rights Reserved.

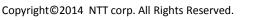
23

Online Phase (Recovery of K_0)

- For each of 2^{n/2} pairs, obtain 1 solution of F₀ that maps X to A. This leads to K₀.
- Make a b- δ -set at v_0 , and compute the corresponding v_{-1} with the recovered K_0 .
- Check the sequence of Δv_5 of the ciphertexts, and check the match with pre-computed T_{δ} .

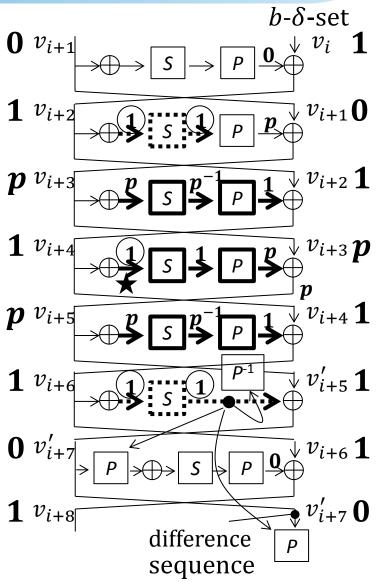
- $2^{3n/4}$ difference sequences are stored in T_{δ} offline.
- $2^{n/2}$ difference sequences are computed online.
- In total, $2^{5n/4}$ matching candidates. Each match succeeds with $Pr = 2^b \cdot 2^{-n/2}$.
- With b = 2, the right key is obtained.

- Offline: (Data, Time, Mem.) = $(0, 2^{3n/4}, 2^{3n/4})$
- Online: (Data, Time, Mem.) = $(2^{3n/4}, 2^{3n/4}, 2^{3n/2})$



- Once K₀ is recovered, recovering all the other subkeys is quite easy.
- Generalization in terms of |K|

K	#rounds for dist.	#rounds for key recov.
n	5	1
s(n/2)	<i>s</i> + 3	<i>s</i> – 1


Optimization with time-memory tradeoff
 Similarly to the prev work on AES, trunc diff chara is relaxed. Data decreases, but Time, Mem increase.

Summary of MitM Attacks on Feistel-3

- Sophisticated trunc. diff. chara with rebound attack.
- If *P* is identical in particular 2 rounds, the attack can be improved by applying equivalent transformation.
- Attack complexity depends on the ratio of the block size *n* and the S-box size *c*.

We improved generic attacks on Feistel with the MitM attack.

	<i>F</i> -function	#rounds for $ K =$			Method	Ref.
	r-function	n	3n/2	2 <i>n</i>	Method	Kei.
Feistel-2	any	5	6	7	imp. diff.	[Knu02]
	any	5	7	9	MitM(ASR)	[IS13]
	bij. <i>,</i> ident.	6	—	—	Integlike	[Tod13]
	any	6	8	10	MitM	Ours
۲. ۲	any	7	9	11	MitM(ASR)	[IS13]
Feistel-3	any	9	11	13	MitM	Ours
Fei	identical	10	12	14	MitM	Ours

Future work: application to concrete designs application to other variants of Feistel

Thank you for your attention !!

Copyright©2014 NTT corp. All Rights Reserved. 28